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PROBLEM SETTING

• Nets η(x;w) take vector inputs x ∈ Rp to {0, 1} or R.
Weight vector w ∈ W ⊆ Rd.

Training set T = {(xi, yi)}ni=1 drawn i.i.d. from P .

• Using (the unknown) P , define mean-squared error

E(w) = E (η(x;w)− y)2

= P (η(x;w) 
= y) (for classifiers)

• Choose classifier via the (accessible) error surface

νT (w) =
1

n

n∑
i=1

(η(xi;w)− yi)
2

• We choose to examine disagreement

Yn(w) = νT (w)− E(w)

νT (w) = E(w) + Yn(w)

Especially concerned about large disagreements

✬ ✩

✫ ✪
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PROPERTIES OF DISAGREEMENT
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If N = {η(·;w)} is a VC class, have uniform SLLN

sup
w∈W
|Yn(w)|→ 0 a.s.

Significance of νT (w)− E(w)

• For generalization: find n such that

sup
w∈W
|νT (w)− E(w)| ≤ ε w.p. τ near 1

• Roughness and extrema of discrepancy influence training

Two related questions

• How fast does Yn(w)→ 0 ?

• What does Yn(w) look like in weight space?

✬ ✩

✫ ✪
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RESCALING THE DISCREPANCY

Let σ2(w) = Var
(
(y − η(x;w))2

)
.

Classification: σ2(w) = E(w)
(
1− E(w)

)
.

Consider as a function of w

νT (w)− E(w)

σ(w)
vs. νT (w)− E(w)

• Large-variance weights dominate the sample path

Undesirable: such nets are bad models

E.g. classification maximum variance at E(w) = 1/2

• Normalization simultaneously provides

greater resolution around E(w) = 0.

Suppose with high probability, in classification,

sup
w

|νT (w)− E(w)|

σ(w)
≤ ε

Then if νT (w) = 0,

E(w) ≤ ε2/(1 + ε2) < ε2

The condition tightens considerably

✬ ✩

✫ ✪
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PRIOR WORK

Vapnik Bound

Vapnik:

P (‖ |νT (w)− E(w)| ‖W > ε) ≤ 6

(
2en

v

)v
e−nε

2/4

— no unknown constant factors

— independent of P

— independent of y

Discrepancy shrinks as

ε =

(
4
v

n
log

2en

v

)1/2

Empirical Processes

Talagrand:

P (‖ |νT (w)− E(w)| ‖W > ε) ≤ K1

(K2nε2
v

)v
e−2nε

2

provided n ≥ K3v/ε
2 (for any VC class)

Discrepancy shrinks as

ε =
(v
n
(K3 ∨ (1/2) logK2)

)1/2

but result is of no immediate use

The order of dependence is (v/n)1/2, with no log factor.

✬ ✩

✫ ✪
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FURTHER DEVELOPMENTS

Normalized Error

Vapnik:

P (
∥∥(E(w)− νT (w)

)
/
√
E(w)

∥∥
W
> ε) ≤ 8

(2en
v

)v
e−nε

2/4

Scaled discrepancy shrinks as

ε =

(
4
v

n
log

2en

v

)1/2

above which with high probability

(∀w ∈ W)
E(w)− νT (w)√

E(w)
≤ ε

Prediction of an O
(
(v/n) log(n/v)

)
shrinkage when working near

E(w) = 0.

Another Approach

View E(w)− νT (w) as a random process indexed by w ∈ W .

Use the smoothness properties of that process to characterize

extremes of the discrepancy

✬ ✩

✫ ✪
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NORMAL APPROXIMATION

Application of CLT

• For large n the CLT tells us

Zn(w) :=
√
nYn(w) =

√
n [νT (w)− E(w)]

is nearly Gaussian.

• Functional CLT says the same for {Zn(w)}, w ∈ W .

• Not tail behavior (probabilities not vanishingly small)

Normal Process
√
n [νT (w)− E(w)]

D
≈ Z(w)

Z(w) is the mean-zero normal process defined by

R(w, v) = E Z(w)Z(v) = Cov
(
(y − η(x;w))2, (y − η(x; v))2

)

Also define

σ2(w) = R(w,w)

Φ̄(b) = P (N(0, 1) > b)

Summary

Problem of extrema of the empirical process corresponds to one

about extrema of a Gaussian process

νT (w)− E(w) > ε ↔ Z(w) > b = ε
√
n

✬ ✩

✫ ✪
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POISSON CLUMPING: GENERALITIES

Viewpoint

Poisson clumping heuristic (PCH) introduced by David Aldous

Tool of wide applicability for estimating exceedance probabilities

{w : Z(w) > b} a scattering of ‘clumps’ inW

✲

✻

w

Z(w)

b

(a)
✲
w

❄ ❄

p1 p2

(b)

Ingredients

• Poisson process of rate λb(w) generating P = {p} ⊂ W .

• Clump process across W choosing clump sets Cb(w) ⊂ W .

Mosaic process

Sb :=
⋃
p∈P

(p + Cb(p)) .

Assertion: Provided

1. Z has no long-range dependence and

2. the level b is large,

then

Sb
D
≈ {w : Z(w) > b}

✬ ✩

✫ ✪
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PROBABILITIES VIA PCH

Fundamental Equation

Number of clumps Nb ∼ Pois(Λb) for Λb =
∫
W λb(w) dw

Clump volume Cb(w) = vol(Cb(w))

(1) P (Z(w) > b) = λb(w)ECb(w).

(2) Since Nb is Poisson,

P (Nb > 0) = 1− e−Λb �

∫
W
λb(w) dw =

∫
W

P (Z(w) > b)

ECb(w)
dw

Finally

P (‖Z(w)‖W > b) �

∫
W

Φ̄(b/σ(w))

ECb(w)
dw

Summary

Result is sum of exceedance probabilities, diminished by a factor

accounting for stochastic dependence.

Have pursued this program

Empirical Process

νT (w)− E(w)
FCLT
=⇒

Gaussian Process

Z(w), R(w, v)
PCH
=⇒

Mosaic Process

λb(w), Cb(w)

✬ ✩

✫ ✪
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SUMMARY

Qualitative Picture

• Mismatches of size b between νT (w) and E(w) occur
based on a PP of intensity λ

• Overwhelmingly probable that such a discrepancy

will occur at a variance maximum

[To Be Seen]

• The size of the region of mismatch varies inversely with b

• In the Gaussian case, the shape of the area

depends on R(w, v) for w ≈ v

Now find clump shape and size:

• Allow probability estimates for assessing generalization

• Qualitative understanding of variability of error surface

✬ ✩

✫ ✪
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SMOOTH ACTIVATIONS: CLUMP SIZE

Activations have two derivatives =⇒ Z(w) has two derivatives:

Z(w) � Z0 + (w − w0)
TG +

1

2
(w − w0)

TH(w − w0)

Gradient G = ∇Z(w) and Hessian H = ∇∇Z(w)

Downward-turning parabola peaks near w0 and attains height ≥ b

Clump size is volume V of an ellipsoid in Rd

V = κd
(2(Z0 − b)−GTH−1G)d/2

|−H|1/2
.

4

6

8

10

12

14

Since H and Z(w0) are jointly Gaussian

E[H |Z(w0) = z] =
−z

σ2(w0)
Λ02(w0)

Λ02(w0) = −E Z(w0)H

= −∇w∇wR(w0, w)|w=w0

✬ ✩

✫ ✪
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SMOOTH ACTIVATIONS: RESULTS

Clump Size

ECb(w) � E[V |Z(w0) > b] � (2π)d/2
(σ(w)/b)d

|Λ02(w)/σ2(w)|
1/2

— Correct invariance to scale change

— Local shape determined by Λ02(w)

— Size diminishes as 1/b per dimension

Exceedance Probability

For a unique variance maximum, PCH estimates

P (‖Z(w)‖W > b) �
|Λ02(w̄)|

1/2

|Λ02(w̄)− Λ11(w̄)|
1/2

Φ̄(b/σ̄)

Also Λ02 − Λ11 = −∇∇σ2(w)/2 > 0 at w = w̄

Leading constant > 1

Gives O((v/n)1/2) shrinking

Normalized Exceedance Probability

P
(∥∥∥Z(w)σ(w)

∥∥∥
W
> b
)
� (2π)d/2 bd Φ̄(b)

∫
W

∣∣∣∣ Λ11
σ2(w)

∣∣∣∣
1/2

dw

where

Λ11(w0) = EGGT = ∇w∇vR(w, v)|w=v=w0

Gives O((v/n)1/2) shrinking of normalized discrepancy

✬ ✩

✫ ✪
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PERCEPTRON EXAMPLE

• Data x ∈ Rp has rotationally symmetric distribution

• Networks η(x;w) = 1[0,∞)(w
Tx)

WLOG wTw = 1

W = surface of unit ball in Rd+1 (d free weights)

• Let y = η(x;w0)

Problem invariant w.r.t rotations around the axis w0.

Clump Size

Easily R(w,w′) = 1/4− (2π)−1|w′ − w|2 + O(|w′ − w|22)
By conditioning on Z(w) > b, rescaling w-axis, and exploiting

similarity to a canonical process, find

ECb(w) = (1/Kd,1)(π/8)
d/ b2d

Exceedance Probability

P (‖Z(w)‖W > b) �

∫
W

Φ̄(b/σ(w))

ECb(w)
dw

...

�
π

4

8d

πd/2Γ(d/2)
Kd,1 b

2d−2e−2b
2

Symmetry allows reduction to 1-dimensional integral, which is

approximated by Laplace’s method.

The shrinkage rate is(
1.3d

n

)1/2
< ε <

(
(1.36 + (1/3) log d)d

n

)1/2

✬ ✩

✫ ✪

D-3(13)



SUMMARY OF PCH RESULTS

Clump Sizes

• Smooth process: E Cb(w) = |Λ02(w̄)|
−1/2

/ bd

• Isotropic rough process: E Cb(w) = K−1d,1(1/ b
2d)

• Separable rough process: E Cb(w) = 1/ b2d

Two qualitatively different regimes

Shrinkage Rates

• Learning smooth functions: ε = (Kd/n)1/2

• Learning with perceptron in Rd: ε � (1.3d/n)1/2

• Learning with orthants in Rd: ε = (d/n)1/2

• Learning with rectangles in Rd: ε = (2d/n)1/2

Architecture/distribution-sensitive rates

No log(n/d) factor

✬ ✩

✫ ✪
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EMPIRICAL COUNTERPARTS

Mean bundle size

E[Db |Z(w)>b] = E[vol{w′ : Z(w′) > b} |Z(w) > b]

=

∫
W
P (Z(w′) > b |Z(w) > b) dw′

Total exceedance volume provided exceedance at w.

A Simple Calculation

Z(w) and Z(w′) are jointly normal. Define

ζ = ζ(w,w′) := (σ/σ′)
1− ρσ′/σ√

1− ρ2

=

(
1− ρ

1 + ρ

)1/2
(if σ constant)

If b/σ " 1 and ρσ/σ′ ≤ 1,

E[Db |Z(w)>b] �

∫
W
Φ̄
(
(b/σ) ζ

)
dw′

Harmonic Mean Inequality

If Z(w) continuous and Db <∞ a.s.,

P (‖Z(w)‖W > b) =

∫
W

Φ̄(b/σ)

E[D−1b |Z(w)>b]−1
dw

≥

∫
W

Φ̄(b/σ)

E[Db |Z(w)>b]
dw

The bound differs from the asymptotic (b→∞) value by

constant factors.

✬ ✩

✫ ✪
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CONCLUSIONS

Have examined the discrepancy between the (stochastic) error

surface and its (deterministic) mean, the true error

Are interested in large values of this discrepancy — they have

implications for generalization

Considering the discrepancy as a stochastic process, have pursued

two distributional approximations to it...

1. Normal approximation (provided don’t go into tails)

2. The Poisson clumping heuristic

PCH says large discrepancies are scattered independently

throughout weight space via a PP.

Shape of the clumps given by correlation structure of generating

process

Size depends inversely on level of discrepancy

Can develop close approximations to the true exceedance

probability

Easier-to-compute analogs to the clump size can be developed

mjt@aig.jpl.nasa.gov

http://www-aig.jpl.nasa.gov/home/mjt/
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